Thursday 11 March 2010

Bioinformatics, Systems Biology, Synthetic Biology: new paradigms or changes in fashion?

This is an article I wrote for a major Greek newspaper "ΒΗΜΑ" which was published on the 5th of February 2010. There is going to be a small Greek twist to this blog as well. A loose translation in English follows the article in Greek.

Βιοπληροφορική, Συστημική Βιολογία, Συνθετική Βιολογία
Καινούργιες ιδέες ή απλά «αλλαγή συρμού»;


Μέσα σε μία μόνο δεκαετία «δημιουργήθηκαν» τρεις «νέοι» τομείς της Βιολογίας. Το 2000 όλοι πίστευαν ότι η Βιοπληροφορική (Βioinformatics) είναι το μέλλον της Βιολογίας. Μετά την τελική αποκωδικοποίηση του ανθρώπινου γονιδιώματος, τρία χρόνια αργότερα, όλοι μιλούσαν για Συστημική Βιολογία (Systems Βiology). Σήμερα, στο τέλος της δεκαετίας που διανύουμε, στο επίκεντρο του ενδιαφέροντος είναι πλέον η Συνθετική Βιολογία (Synthetic Βiology).
Είναι απόλυτα λογικό λοιπόν να αναρωτηθούμε αν οι συγκεκριμένοι τομείς είναι όντως καινούργιοι, αν πρόκειται δηλαδή για τη δημιουργία ενός νέου «υποδείγματος» (paradigm). Αλλάζει όντως η επιστήμη της Βιολογίας με πρωτόγνωρα ραγδαίους ρυθμούς ή οι επιστήμονες δίνουν στην έρευνά τους το πιο νέο, και άρα ελκυστικό, όνομα για να έχουν ίσως περισσότερες ευκαιρίες να βρουν χρηματοδότηση;
Η οποιαδήποτε απάντηση σε αυτό το ερώτημα δεν μπορεί να δοθεί πριν από τον ορισμό αυτών των τομέων.Βιοπληροφορικήείναι η ανάπτυξη εργαλείων πληροφορικής για την ανάλυση, συλλογή και διαχείριση των βιολογικών δεδομένων.Συστημική Βιολογία είναι η μελέτη των σχέσεων των στοιχείων ενός βιολογικού συστήματος με σκοπό την κατανόηση του συστήματος· ενσωματώνει εργαλεία και μεθοδολογίες από επιστήμες όπως τα μαθηματικά, η φυσική, η χημεία και η πληροφορική. Τέλος, ηΣυνθετική Βιολογίαείναι η σύνθεση πολύπλοκων συστημάτων, βασισμένων και εμπνευσμένων από τα βιολογικά συστήματα.
Με απλά λόγια, η Συστημική Βιολογία ερευνά την οργάνωση και λειτουργία των βιολογικών συστημάτων όπως τα γνωρίζουμε, ενώ η Συνθετική Βιολογία προσπαθεί να κατασκευάσει αυτά και άλλα βιολογικά συστήματα στο εργαστήριο. Γι΄ αυτόν τον λόγο η Συνθετική Βιολογία θεωρείται από μερικούς το τελευταίο βήμα στην επεξήγηση της βιολογικής πολυπλοκότητας, ότι δηλαδήμόνοόταν καταφέρουμε να φτιάξουμε ζωή από το μηδέν στο εργαστήριο θα έχουμε αντιληφθεί πραγματικά πώς λειτουργούν τα κύτταρα.
Για την καλύτερη προσπέλαση των τομέων αυτών, θα αναφερθώ σύντομα στη συνεισφορά του καθενός στην κατανόηση των πρωτεϊνικών αλληλεπιδράσεων, ένα θέμα το οποίο απασχολεί δικαιολογημένα εδώ και έναν αιώνα τους βιολόγους, μιας και, όπως έχει πια αποδειχθεί, η πολυπλοκότητα που βλέπουμε γύρω μας οφείλεται στην πολυπλοκότητα των πρωτεϊνών.
Στο τέλος του 20ού αιώνα, ένα μέρος από τις πρωτεϊνικές αλληλεπιδράσεις είχαν επιβεβαιωθεί πειραματικά στα εργαστήρια, αλλά τα αποτελέσματα αυτά ήταν διεσπαρμένα
σε εκατοντάδες άρθρα. Μεγάλη ήταν λοιπόν η συνεισφορά του πρώτου από τους τρεις τομείς στους οποίους αναφερόμαστε, του τομέα της Βιοπληροφορικής. Το 2000 δημιουργήθηκε η πρώτη βάση δεδομένων των πειραματικά επιβεβαιωμένων πρωτεϊνικών αλληλεπιδράσεων, η DΙΡ (1).
Οι βάσεις δεδομένων, όπως η DΙΡ, αποδείχθηκαν να είναι ουσιαστικά η «τροφή» που χρειαζόταν για να δημιουργηθεί ο τομέας της Συστημικής Βιολογίας. Οι βιολόγοι, ακολουθώντας την ως τότε κυρίαρχη- αλλά όχι και μοναδική- προσέγγιση, την αναλυτική (analytical) ή αναγωγική (reductionist) προσέγγιση, ερευνούσαν καθεμιά από τις πρωτεϊνικές αλληλεπιδράσεις ξεχωριστά ή σε μικρές ομάδες (βιολογικές οδούς). Αντιθέτως, όταν οι μαθηματικοί, οι φυσικοί και οι πληροφορικοί κοίταξαν τις βάσεις δεδομένων που μόλις είχαν δημιουργηθεί, είδαν τις αλληλεπιδράσεις ως κομμάτια ενός παζλ, ενός συστήματος.
Με άλλα λόγια, η Βιοπληροφορική δεν τακτοποίησε απλά τα- μεγάλων διαστάσεων πια- βιολογικά δεδομένα, αλλά δημιούργησε χάρτες (η DΙΡ είναι χάρτης των δικτύων αλληλεπιδράσεων (interactome), ενώ άλλες βάσεις δεδομένων είναι οι χάρτες του γονιδιώματος (genome), του πρωτεϊνιδιώματος (proteome), του μεταγραφήματος (transcriptome) κτλ.). Αρα, η μεγάλη συνεισφορά της Βιοπληροφορικής ήταν ότι έδειξε μια διαφορετική- σκόπιμα δεν λέω καινούργια- προσέγγιση των βιολογικών δεδομένων που υπήρχαν ως τότε.
Από εκεί και πέρα, θα μπορούσαμε να πούμε ότι η Συστημική Βιολογία «καταβρόχθισε» τη Βιοπληροφορική και πήρε τη θέση της στο επίκεντρο του ενδιαφέροντος. Φυσικοί, μαθηματικοί και πληροφορικοί παρατήρησαν ότι θα μπορούσαν να χρησιμοποιήσουν τις τεχνικές που είχαν αναπτύξει για τα δικά τους δεδομένα, για να αναλύσουν τα βιολογικά συστήματα. Το επιχείρημά τους ήταν ότι μέσα από έναν επαναληπτικό κύκλο μοντελοποίησης, προσομοίωσης και θεωρίας θα βοηθούσαν στην κατανόηση των βιολογικών συστημάτων και στη στόχευση των πειραμάτων, διατυπώνοντας νέες υποθέσεις οι οποίες θα μπορούσαν να διερευνηθούν ως προς την εγκυρότητά τους στα εργαστήρια από τους βιολόγους.
Προτού προλάβουν όμως να αλλάξουν τα ονόματα των πανεπιστημιακών τμημάτων και των μεταπτυχιακών πτυχίων, από Βιοπληροφορική σε Συστημική Βιολογία, άρχισαν οι συζητήσεις για τη Συνθετική Βιολογία. Αρχισαν μάλιστα προτού ακόμη προλάβει να δημοσιευτεί η έκθεση του ΕRΑSysΒio που αναφερόταν στην πορεία της ευρωπαϊκής έρευνας στον τομέα της Συστημικής Βιολογίας· στην έκθεση αυτή η Ελλάδα ήταν απούσα.
Οπως οι μαθηματικοί, οι φυσικοί και οι πληροφορικοί πρότειναν τρόπους να βοηθήσουν στην κατανόηση της πολυπλοκότητας των οργανισμών, πρότειναν και οι μηχανικοί τον δικό τους τρόπο, τη μεθοδολογία που χρησιμοποιείται για την κατασκευή αυτοκινήτων, μηχανημάτων και αεροπλάνων. Το επιχείρημά τους ήταν αλλάζοντας ελαφρά και με λογικό τρόπο τα γνωστά ως τότε συστήματα, οι αλλαγές στη συμπεριφορά των συστημάτων που θα δημιουργούνταν θα ήταν μεγάλη πηγή γνώσης.
Στην περίπτωση των πρωτεϊνικών αλληλεπιδράσεων, οι συνθετικοί βιολόγοι έχοντας διαλέξει ένα μικρό μέρος του συνολικού δικτύου αλληλεπίδρασης των πρωτεϊνών (που αντιστοιχεί συνήθως σε μια βιολογική οδό) αφαιρούν, μία μία ή σε συνδυασμούς, τις πρωτεΐνες. Παρομοίως, άλλοι επιστήμονες αφαιρούν όσες περισσότερες πρωτεΐνες μπορούν από το συνολικό δίκτυο έτσι ώστε να βρουν τον ελάχιστο βιώσιμο συνδυασμό πρωτεϊνών. Και τα δύο αυτά παραδείγματα μπορεί να τα βρει κανείς στην έκθεση του ΝΕSΤ Ρathfinder Ιnitiative (3), στο οποίο παρουσιάζονται 18 προγράμματα Συνθετικής Βιολογίας, όπως η κατασκευή βιολογικών καυσίμων, η νανοτεχνολογία και οι ασθένειες (σημειώνω ότι μόνον σε έναν από αυτούς τους τομείς υπήρχε ελληνική συμμετοχή και αυτή είναι ειδικευμένη στη χάραξη πολιτικής).
Δεν υπάρχει αμφιβολία ότι όλες αυτές οι μεθοδολογίες και τα εργαλεία που χρησιμοποιούνται όλο και περισσότερο έχουν βοηθήσει σε σημαντικό βαθμό την κατανόηση της βιολογικής πολυπλοκότητας. Το ερώτημα που θέτω εδώ- όπως το έθεσαν και πολλοί από τους συγγραφείς στο ειδικό τεύχος του ΕΜΒΟ reports (4) τον Αύγουστο που μας πέρασε- είναι το κατά πόσον αυτοί οι τομείς είναι νέες ιδέες ή απλά αλλαγές «συρμού», αποτελέσματα μιας αναζήτησης για τον επόμενο «ελκυστικό» όρο. Το ερώτημα αυτό δεν είναι καθόλου τυχαίο από τη στιγμή που δεν είναι η πρώτη φορά που η διεπιστημονικότητα οδηγεί σε άλματα στη Βιολογία: στη δεκαετία του 1950 η συνεισφορά των φυσικών και μαθηματικών επίσπευσε την ανάδυση της Μοριακής Βιολογίας (Μolecular Βiology), ενός - τότε- νέου τομέα της Βιολογίας.
Κατά τη γνώμη μου- και πολλών άλλωνσε εννοιολογικό επίπεδο οι τομείς αυτοί δεν είναι όσο καινούργιοι όσο φαίνονται, αλλά αποτελούν τη συνέχεια παλιών προσεγγίσεων. Η διαμάχη ανάμεσα στην αναλυτική (analytical) ή αναγωγική (reductionist) προσέγγιση και στην ολιστική (holistic) ή συστημική (systemic) προσέγγιση υπήρχε πάντα στην επιστήμη της Βιολογίας. Η πρώτη προσέγγιση υποστηρίζει ότι τα πάντα μπορούν να εξηγηθούν μελετώντας τα μέρη ενός συστήματος ξεχωριστά· αυτή ήταν η κύρια προσέγγιση που χρησιμοποιούσαν οι μοριακοί βιολόγοι μέχρι πρόσφατα. Η δεύτερη προσέγγιση- ανάμεσα στους υποστηρικτές της οποίας ήταν ο φιλόσοφος Καντ και ο ποιητής/φυσιοδίφης Γιόχαν Β. Γκαίτε- υποστηρίζει ότι οι βιολογικές λειτουργίες πρέπει να μελετούνται συνολικά, αφού ένα σύστημα είναι κάτι παραπάνω από το σύνολο των στοιχείων που το αποτελούν- πρόκειται με άλλα λόγια για τη λεγόμενη «ανάδυση ιδιοτήτων» (emergence).
Για την ώρα τουλάχιστον, η Συστημική και η Συνθετική βιολογία αποτελούν συνέχεια αυτής της δεύτερης προσέγγισης, δεν έχουν δηλαδή αποδείξει ακόμη ότι αποτελούν νέα υποδείγματα(paradigms), όπως αποδείχθηκε τελικά ότι ήταν η Μοριακή Βιολογία. Επειδή οι επιστήμες τους τελευταίους δύο αιώνες παρέμειναν «απομονωμένες» και άρα οι μεθοδολογίες της καθεμιάς δεν είναι αναγκαστικά ικανές για να χρησιμοποιηθούν σε άλλες επιστήμες, η επικοινωνία μεταξύ φυσικών, μαθηματικών, πληροφορικών, μηχανικών, και βιολόγων, αν και έχει ήδη οδηγήσει σε επιτυχίες, παραμένει ιδιαίτερα δύσκολη. Σε αυτό ίσως βοηθούσε η παραγωγή διεπιστημονικών επιστημόνων, πράγμα που τονίζεται στην έκθεση του ΕRΑSysΒio (2), στην οποία συστήνεται ότι μια νέα προσέγγιση στην εκπαίδευση επιστημόνων είναι απαραίτητη σε όλα τα επίπεδα.
Ας ελπίσουμε ότι η καινούργια πολιτική της Ερευνας και Τεχνολογίας της χώρας μας θα ενημερωθεί για αυτές τις εκθέσεις και θα βοηθήσει να μπει και η Ελλάδα στα ευρωπαϊκά δίκτυα της Συστημικής και Συνθετικής Βιολογίας.

--------------

In just one decade in the science of biology three "new" areas were "created". In 2000 everyone thought that Bioinformatics is the future of biology. After the final sequence of the human genome, three years later, everyone was talking about Systems biology.Today, at the end of this decade, the focus is Synthetic Biology. It is therefore perfectly reasonable to wonder if these areas are indeed new, if a new paradigm is being created. Is the science of biology changing with with unprecedented high rates or do scientists give to their research the newest, and therefore most attractive name in order to increase their opportunities of getting funding?
Any answer to this question cannot be given before the definition of these fields.Bioinformatics is the use of tools for the analysis, collection and management of biological data. Systems Biology is the study of relations between elements of a biological system to understand the system, integrating tools and methodologies from disciplines such as mathematics, physics, chemistry and computing. Finally, Synthetic Biology is the synthesis of complex systems which are based and inspired by biological systems.
Put simply, systems biology investigates the organization and functioning of biological systems as we know them, while Synthetic biology seeks to construct these and other biological systems in the laboratory. That is why the Synthetic biology is considered by some as the last step in the explanation of biological complexity, in other words only when we will be able to create life from scratch in the laboratory we really understand how the cells work.
To explain a bit better these sectors I will refer briefly to the contribution of each to the understanding of protein interactions, an issue that rightly concerns biologists, for over a century, because, as it is now established, the complexity we see around us is due to the complexity at the protein level.
At the end of the 20th century, a large number of protein interactions were confirmed experimentally in the laboratories, but the results were scattered in hundreds of articles. So the contribution of the first of the three areas we are talking about here, the field of Bioinformatics, was great. In 2000 the first database of experimentally verified protein interactions was created, DIP (1).
The databases, such as DIP, proved to be essentially the "fuel" needed to create the field of systems biology. Biologists, following the by then dominant, but not alone, analytical or reductionist approach, investigated each protein interaction separately or in small groups (biological pathways). However, when the mathematicians, physicists and computer scientists looked at the databases, they saw the interactions as pieces of a puzzle, a system.
In other words, Bioinformatics not only organised the large-scale biological data, but created maps (DIP is the map of protein interactions (interactome), while other databases are maps of the genome , the proteome, the transcriptome, etc.). So the great contribution of Bioinformatics was that it revealed a different - I deliberately do not call it new - approach.
Beyond that, we could say that systems biology "devouring" Bioinformatics and took its place in the limelight. Physicists, mathematicians and computer scientists have observed that they could use the techniques they had developed for their own data to analyze biological systems. Their argument was that through an iterative cycle of modeling, simulation and theory they will help in our understanding of biological systems and targeting experiments, making new hypotheses that could be explored as to their validity in the laboratories by biologists.
Before there was time to change the names of University Departments and graduate degrees from Bioinformatics to Systems Biology, discussions began on Synthetic Biology. They started even before the publication of the ERASysBio report, in which the course of European research in systems biology was outlined; in this report Greece was absent.
As mathematicians, physicists and computer scientists suggested ways to help in our understanding of the complexity of systems, engineers proposed to use their methods too, in other words the methodology they use in the manufacture of cars, machinery and aviation industries. Their argument was that changing slightly and in a reasonable manner the known systems, the observed changes in the behavior of systems would be a great source of knowledge.
In the case of protein interactions, synthetic biologists remove a small part of the network of protein interactions (which is usually a biological pathway) one by one or combinations of proteins. Similarly, other scientists remove as many proteins as they can from the total network to find the minimum sustainable mix of proteins. Both these examples can be found in the report of the NEST Initiative Rathfinder (3), which presented 18 programs in synthetic biology, such as the construction of bio-fuels, nanotechnology and disease (note that only one of these areas was Greek participation and is specialized in policy).
There is no doubt that all these methodologies and tools that are increasingly being used, have already been significant help to the understanding of biological complexity. The question I ask here - as raised by many authors in the special issue of EMBO reports (4) in August of last year -is whether these areas are a new paradigm or just fashion-shifts. This question is not without relevance, since it is not the first time that interdisciplinarity leads to breakthroughs in biology: in the 1950s the contribution of mathematics and speeded up the emergence of Molecular Biology, a then-new field of biology.
In my opinion-and many others- at the conceptual level, these areas are not as brand new as they seem. The dispute between the analytical or reductionist approach and the holistic or systemic approach is very old in the science of Biology. The first approach argues that everything can be explained by studying the components of a system separately; this was the main approach used by molecular biologists until recently. The second approach - whose supporters include the philosopher Kant and the poet / naturalist Johann V. Goethe - argues that biological functions should be studied as a whole, since a system is more than the sum of its constituent elements - in other words there are also "emergent properties".
For now at least, systems and synthetic biology belong to this second approach, and have not yet proven that they are new paradigms, as it was demonstrated eventually that Molecular Biology was. As the sciences over the last two centuries remained "isolated", the methodologies of each are not necessarily able to be used in other sciences, so communication between the physicists, mathematians, computer scientists, engineers and biologists, even though it has already resulted in successes, it remains very difficult. This can be avoided if interdisciplinary scientists are produced, as was highlighted in ERASysBio (2), in which it was recommended that a new approach to training scientists is needed at all levels.
Hopefully the people responsible for the research and technology policies in our country will be informed of these reports, will help Greek scientists to become part of the European networks of System and Synthetic Biology.

No comments:

Post a Comment